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A WAVE EQUATION MODEL TO SOLVE THE
MULTIDIMENSIONAL TRANSPORT EQUATION
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SUMMARY

The wave equation model, originally developed to solve the advection–diffusion equation, is extended to the
multidimensional transport equation in which the advection velocities vary in space and time. The size of the
advection term with respect to the diffusion term is arbitrary. An operator-splitting method is adopted to solve
the transport equation. The advection and diffusion equations are solved separately at each time step. During the
advection phase the advection equation is solved using the wave equation model. Consistency of the first-order
advection equation and the second-order wave equation is established. A finite element method with mass
lumping is employed to calculate the three-dimensional advection of both a Gaussian cylinder and sphere in both
translational and rotational flow fields. The numerical solutions are accurate in comparison with the exact
solutions. The numerical results indicate that (i) the wave equation model introduces minimal numerical
oscillation, (ii) mass lumping reduces the computational costs and does not significantly degrade the numerical
solutions and (iii) the solution accuracy is relatively independent of the Courant number provided that a stability
constraint is satisfied.
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1. INTRODUCTION

The transport equation arises naturally in several areas of environmental science and energy
engineering. In many cases advection plays a dominant role in transport process. The numerical
solution of the advection-dominated transport equation has been one of the most difficult problems in
computational fluid dynamics. It is known that the advection component is the main source of
difficulties in solving the transport equation. Many numerical papers have been published over the
past decade. An accurate and effective numerical method for solving the transport equation is of great
interest. In physics the advection equation represents the conservation laws of fluid mechanics. The
mass, energy and momentum carried by fluid particles remain conservative in a flow field. The
general solution of the advection equation is similar to a progressive wave in the flow direction where
physical information is transferred from upstream to downstream and the advection equation is non-
symmetric. Symmetric numerical methods such as central finite differences and the Galerkin finite
element method are not likely to solve the advection equation accurately. It is preferable to adopt a
numerical method consistent with the physical nature of the problem being considered. The
characteristic method1 and upwind method2 are typical non-symmetric numerical methods which
have been widely used. The characteristic method with linear interpolation gives a smooth but
seriously damped solution. The characteristic method with high-order interpolation, developed by
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Holly and Preissmann,1 greatly reduces the numerical diffusion in one- or two-dimensional problems.
In three dimensions the characteristic method with high-order interpolation is much more complex
than in two dimensions. The upwind finite element method with asymmetric weighting functions
improves the numerical solutions of the advection equation, but the first-order upwind model may
introduce serious numerical diffusion.3 Furthermore, the upwind parameter depends on both the
magnitude and direction of the local advection velocities. It is very difficult to find a proper upwind
parameter in cases where the advection velocities are non-uniform and unsteady. The second-order
wave equation is symmetric or nearly symmetric and its solutions involve progressive waves in both
directions of the flow. It may be expected that the wave equation can be solved accurately by
symmetric numerical methods such as the well-known Galerkin finite element method. Consistency
of the first-order advection equation and the second-order wave equation is established in this paper.
The main idea behind a wave equation model is to solve a wave equation to obtain the solution of the
advection equation. In particular, the discretized wave equation has better numerical properties than
the discretized advection equation. The numerical solutions of the wave equation model display little
oscillation. The wave equation model introduces both numerical diffusion and inverse numerical
diffusion4 because it involves advection in both flow directions; thus the final numerical diffusion
error is small.

Mass lumping diagonalizes the coefficient matrix and reduces the memory requirement. Moreover,
a linear system solver is not required and thus the computational costs are significantly reduced.
Equivalence of the wave and advection equations is demonstrated and consistency is established in
Section 2. A finite element method for the wave equation model (WEM=FEM) and a solution
procedure for the wave equation model of the transport equation are described in Section 3.
Numerical examples of advection in 3D of both a Gaussian cylinder and sphere in translational and
rotational flow fields are given in Section 4. Advection-dominated transport of a cloud parcel is
presented as the final example.

2. EQUIVALENCE OF THE WAVE EQUATION TO THE ADVECTION EQUATION

In an operator-splitting method the transport equation is split into advection and diffusion
components. The advection equation is written as

@C

@t
� ~V � HC � 0 �1�

where the advection velocity~V is a known function of time and space. The initial condition is given
as

C�x; y; z; t0� � C0�x; y; z�: �2�

Boundary conditions on the inflow boundaries are specified as

C�x; y; z; t� � Cin�x; y; z; t� on @Oin: �3�

A boundary condition is not needed on the outflow boundary for the advection equation (1). It is
difficult to solve the advection equation directly, especially in a multidimensional space where the
advection velocities are non-uniform and unsteady. The numerical dispersion and numerical diffusion
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soon render unphysical solutions. To avoid these difficulties, one may transform the first-order
advection equation into a second-order wave equation by differentiating the advection equation (1).
Positive and negative advection equations are defined as

@

@t
� ~V � H

� �

C �
@

@t
� U

@

@s

� �

C � 0; �4�

@

@t
ÿ ~V � H

� �

C �
@

@t
ÿ U

@

@s

� �

C � 0; �5�

whereU is the magnitude of the advection velocity and~s is the unit vector of the local flow direction.
The solutions of equations (4) and (5) represent positive advection and negative advection in the flow
direction respectively. The advection equation (4) is differentiated by the negative advection operator
as

@

@t
ÿ ~V � H

� �

@

@t
� ~V � H

� �

C � 0: �6�

Expanding equation (6) yields a wave equation

@
2C

@t2
� ~V ~V : :HHC � ÿ

@ ~V

@t
� � ~V � H� ~V

 !

� HC; �7�

where the first term on the right is a double inner product of second-order tensors. A detailed
derivation of equation (7) is given in the Appendix. Equation (6) can also be written as

@

@t
ÿ U

@

@s

� �

@

@t
� U

@

@s

� �

� 0 in flow co-ordinates: �8�

Expanding equation (8) yields a wave equation

@
2C

@t2
� U2 @

2C

@s2
� ÿ

@U

@t
� U

@U

@s

� �

@C

@s
in flow co-ordinates: �9�

The wave equations (7) and (9) are identical. Physically, equation (9) implies that the wave
equation involves positive advection and negative advection in the flow direction. If the advection
velocity is constant, the wave equation (9) is reduced to the classical wave equation

@
2C

@t2
� U2 @

2C

@s2
: �10�

The general solutions of equation (10) consist of progressive waves in both directions of the flow. The
physical information involved in the wave equation (9) is transferred in both directions of the flow;
the advection equation transfers the information in only one direction. It can be seen that the wave
equation is symmetric or nearly symmetric; the advection equation is non-symmetric. For the wave
equation an additional initial condition is given as

@C

@t
� ÿ ~V � HC0 at t � t0; �11�
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whereC0 is given by equation (2). Both inflow and outflow boundary conditions are required for the
wave equation (9). The inflow boundary condition is given in equation (3). The outflow boundary
condition is obtained from the advection equation. In fact, the solution on the outflow boundary is
part of the advection equation (1); it cannot be specified arbitrarily. In other words, the advection
equation must be imposed on the outflow boundaries. The outflow boundary condition is written as

C�x; y; z; t� � Cout�x; y; z; t� on @Oout: �12�

We need to demonstrate that the solutions of the wave equation and advection equation are
equivalent before numerical discretization. The advection equation may be written as

A � 0; �13�

whereA � @C=@t � ~V � HC is defined as the advection function. The wave equation is written as

@

@t
ÿ ~V � H

� �

A � 0: �14�

The advection functionA is constant along characteristics:

dx

dt
� ÿu;

dy

dt
� ÿv;

dz

dt
� ÿw; �15�

whereu, v andw are the three components of the advection velocity~V . A characteristic through a
point (x, y, z, t) in the solution space can be tracked backwards in time to either the departure point of
the initial space (t� t0) or the outflow boundary. If the two conditions

A � 0 at t � t0 everywhere �16�

and

A � 0 on the outflow boundary for t � t0 �17�

are imposed, thenA� 0 (i.e. the advection equation is satisfied) can be guaranteed everywhere inside
the solution space (x, y, z, t). Conditions (16) and (17) are the same as equations (11) and (12).
Therefore the solution of the wave equation is the same as the solution of the advection equation after
imposing conditions (16) and (17). In fact, the physical information on the outflow boundaries comes
from inside the domain. Condition (17) requires that the first-order advection equation be imposed on
the outflow boundaries to obtain the solutions on the outflow boundaries. The characteristic method is
one of the most effective methods for solving the advection equation and is used to calculate the
outflow boundary solutions in this paper.

3. WEM=FEM FORMULATION OF THE TRANSPORT EQUATION

A finite element method (WEM=FEM) for the solution of the wave equation model of the transport
equation is presented in this section. A general transport equation can be written as

@C

@t
� ~V � HC � DH2C � aC � Q; �18�
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whereD is a diffusion coefficient,a is a first-order chemical reaction coefficient andQ is a source
term. In an operator- splitting method the transport equation is split into an advection equation and a
diffusion equation:

@C

@t
� ~V � HC � 0; �19�

@C

@t
� DH2C � aC � Q: �20�

In physics the diffusion, chemical reaction and source terms are all local phenomena, so they
appear in the diffusion equation (20). The advection equation (19) is solved using the wave equation
model. For a finite element formulation an alternative form of the wave equation (7) can be written as

@
2C

@t2
� H � � ~V � ~V � HC�� ÿ

@ ~V

@t
� ~V �H � ~V �

 !

� HC: �21�

If the fluid is incompressible, equation (21) reduced to

@
2C

@t2
� H � � ~V � ~V � HC�� ÿ

@ ~V

@t
� HC: �22�

A derivation of equation (21) can be found in the Appendix. A finite element formulation of the wave
equation (22) is presented in Reference 4. A Galerkin formulation is applied to the wave equation
(22), where integration by parts has been employed to obtain a weak form:

@
2C

@t2
;ji

� �

�

�

@O

� ~V � HC�Vnjids ÿ h� ~V � HC�; � ~V � Hji�i ÿ
@ ~V

@t
� HC

 !

;ji

* +

; �23�

where

h f ; gi �
� � �

O

f � gdxdydz: �24�

The inner product notationh:; :i denotes integration over the entire 3D domain. Thefi (i � 1; 2; . . .)
are global interpolation functions. The boundary integral on the right-hand side of equation (23)
disappears on boundaries with zero normal flux. At the nodes of inflow and outflow boundaries,
equation (23) is replaced by essential boundary conditions. An inflow boundary condition is specified
and the outflow boundary condition is calculated by the characteristic method from previous solutions
inside the domain. At the internal nodes the boundary integral disappears and equation (23) is
reduced to

@
2C

@t2
;ji

� �

� ÿh� ~V � HC�; � ~V � Hji�i ÿ
@ ~V

@t
� HC

 !

;ji

* +

: �25�

The time derivative term is approximated by finite differences; the other terms are weighted over
three time levelsn� 1, n andn71. The corresponding system equation of the wave equation (25) is
written as

�A�fCn�1
g � �B�fCn

g � �E�fCnÿ1
g; �26�
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where the matrix coefficients are given by

Aij �

�

O

fjfidO� yDt2
�

O

� ~V � Hfj��
~V � Hfi� �

@ ~V

@t
fiHfj

( )n�1

dO; �27�

Bij � 2
�

O

fjfidOÿ �1 ÿ 2y�Dt2
�

O

� ~V � Hfj��
~V � Hfi� �

@ ~V

@t
fiHfj

( )n

dO; �28�

Eij � ÿ

�

O

fjfidOÿ yDt2
�

O

� ~V � Hfj��
~V � Hfi� �

@ ~V

@t
fiHfj

( )nÿ1

dO: �29�

Here the superscriptsn� 1, n andn71 indicate that these terms are calculated at time levelsn� 1, n
andn7 1 respectively.O is the integral domain andy is the time weighting factor (04 y 4 0�5). If
y� 0, i.e. an explicit scheme, then the matrices [A] and [E] contain only the first term, i.e.

Aij � ÿEij �

�

O

fjfidO: �30�

These matrices can be mass lumped by summing all elements in a row and placing the results on
the diagonal. A matrix solver is not needed. The counterpart of the matrix [B] is also diagonalized.
For the present problems the mass lumping significantly reduces the computational costs. Matrices
involving space derivatives cannot be diagonalized. Mass lumping has been used by many
researchers.5 It can be seen in the numerical examples that mass lumping does not degrade the
numerical solutions. Several different numerical methods could be used to solve the wave equation
(7). A finite element method with mass lumping has proven to be an effective technique. The
objective of this paper is to demonstrate that the wave equation model is one of the most accurate and
effective numerical methods for solving the transport equation. The diffusion equation (20) is solved
by a finite element method and a Crank– Nicolson time-stepping scheme where a natural boundary
condition has been imposed. The essential boundary condition needs to be specified. The finite
element formulation of the diffusion equation is well established. The details will not be presented
here. The finite element system of the diffusion equation is written as

�H �fCn�1
g � �P�fCn

g � f f g; �31�

where the matrix coefficients are given by

Hij � 1 ÿ
aDt

2

� �
�

O

fjfidO�
DDt

2

�

O

HfjHfidO; �32�

Pij � 1 �
aDt

2

� �
�

O

fjfidOÿ
DDt

2

�

O

HfjHfidO; �33�

f f g �

�

O

Qn�1=2
fidO: �34�

Here the source term is evaluated at time leveln � 1
2. The solution algorithm for solving the transport

equation using a wave equation model is shown inFigure 1, where the horizontal direction denotes
the diffusion process and the vertical direction denotes the advection process.Cnÿ1

0 andCn�1
0 are the

intermediate solutions at time levelsn71 andn� 1 respectively. The wave equation model is a
three-time-level algorithm. The new solutionCn�1 is computed using the old solutionsCnÿ1 andCn.
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Substep 1. Solve the diffusion equationCnÿ1
ÿ!
FEM

Cnÿ1
0 , i.e.

�H �fCnÿ1
0 g � �P�fCnÿ1

g � f f nÿ1=2
g; �35�

where

f nÿ1=2
i �

�

O

Qnÿ1=2
fidO: �36�

Substep 2. Solve the wave equationCnÿ1
0 , Cn

ÿ!
FEM

Cn�1
0 , i.e.

�A�fCn�1
0 g � �B�fCn

g � �E�fCnÿ1
0 g: �37�

Substep 3. Solve the diffusion equationCn�1
0 ÿ!

FEM
Cn�1, i.e.

�H �fCn�1
g � �P�fCn�1

0 g � f f n�1=2
g: �38�

4. ERROR ANALYSIS OF THE WAVE EQUATION MODEL IN TWO DIMENSIONS

We now present a truncation error analysis of WEM=FEM for solving the advection equation in two-
dimensional space. The following assumptions are made to simplify the analysis.

1. The advection velocities are uniform in space and steady in time.
2. The space grids are uniform.
3. The second-order time derivative is approximated by central finite differences.
4. The space derivatives are approximated by a Galerkin finite element method and evaluated at

time leveln (explicit scheme).
5. The coefficient matrix is diagonalized by mass lumping.

AssumingDx�Dy andu� v, the wave equation (7) is reduced to

�C � u2C2s � 2uvCxy � v
2C2y; �39�

�C � U2C2s in flow co-ordinates; �40�

where the superscript double dot denotes a second-order time derivative and the subscripts denote
space derivatives. For example,C2x is the second-order derivative with respect tox. One internal
node is connected with eight neighbouring nodes, as shown inFigure 2. Node 5 is the internal node.

Figure 1. Sketch of solution procedure for WEM=FEM
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The finite element equation of node 5 contains nine terms in two dimensions. The finite element
equation for node 5 can be written as

P

9

j�1
aj

�Cj �
u2

Dx2

P

9

j�1
bjCj; �41�

where the coefficientsaj and bj are calculated by a Galerkin finite element method. The wave
equation and node structure are symmetric, as are the coefficients, i.e.

a1 � a9; a2 � a8; a3 � a7; a4 � a6; �42�

b1 � b9; b2 � b8; b3 � b7; b4 � b6: �43�

Symmetric nodes such as nodes (1, 9), (2, 8), etc. have the same contribution to the finite element
equation at internal node 5. The coefficients are found to be

a1 �
1

36 ; a2 �
1
9 ; a3 �

1
36 ; a4 �

1
9 ; a5 �

1
4 ; �44�

b1 �
5
6 ; b2 �

1
3 ; b3 �

1
6 ; b4 �

1
3 ; b5 � ÿ

3
8 : �45�

Equation (41) is expanded as a Taylor series at node 5. Each term of equation (41) is expanded as

Cj � C5 �
P

1

n�1
�DxjCx � DyjCy�

n
; j � 1; 2; . . . ; 9; �46�

�Cj �
�C5 �

P

1

n�1
�Dxj

�Cx � Dyj
�Cy�

n
; j � 1; 2; . . . ; 9: �47�

Owing to the node symmetry, it follows that

Dx1 � ÿDx9; Dy1 � ÿDy9; Dx2 � ÿDx8; Dy2 � Dy8 � 0;

Dx3 � ÿDx7; Dy3 � ÿDy7; Dx4 � Dx6 � 0; Dy4 � ÿDy6:

The terms on the left side of equation (41) are written as

a1�
�C1 �

�C9� � 2a1
�C5 �

P

1

n�2;4;...

1
n!

�Dx �Cx � Dy �Cy�
n

 !

; �48�

a2�
�C2 �

�C8� � 2a2
�C5 �

P

1

n�2;4;...

1
n!

�Dx �Cx�
n

 !

; �49�

a3�
�C3 �

�C7� � 2a3
�C5 �

P

1

n�2;4;...

1
n!

�Dx �Cx ÿ Dy �Cy�
n

 !

; �50�

a4�
�C4 �

�C6� � 2a4
�C5 �

P

1

n�2;4;...

1
n!

�Dy �Cy�
n

 !

: �51�

By adding equations (48)–(51), the left side of equation (41) can be written as

LS � �C5 �
1
6Dx2C2x �

1
6Dy2

�C2y �
1
72Dx4

�C4x �
1
72Dy4

�C4y �
1
36Dx2

Dy2
�C2x;2y � HOT: �52�
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The left side of equation (41) is the second-order time derivative of equation (52), which should not
be related to the neighbouring nodes. Except for the first term, all the other terms may be considered
as error caused by the finite element approximation. If mass lumping is used, i.e. adding all the
coefficientsaj to term 5, one finds

P

9

j�1
aj � 1: �53�

Finally, the left side of equation (41) becomes

LS � �C5: �54�

Equation (54) is exactly the same as before the finite element method was applied. Following the
above procedure, the right side of equation (41) can be written as

RS �
u2

Dx2
�Dx2C2x � 2DxDyCx;y � Dy2C2y �

1
12 �Dx4C4x � Dy4C4y

� 4DxDy3Cx;3y � 4Dx3
DyC3x;y � 4Dx2

Dy2C2x;2y�� � HOT:

�55�

By co-ordinate transformation, equation (55) can be written in flow co- ordinates as

�C � U2C2s �
1

12Ds2U2
�C4s ÿ

1
8 �C2s ÿ C2n�

2
� � HOT: �56�

wheres is flow direction,n is normal to flow direction in two-dimensions. The second time derivative
of equation (56) is approximated by finite differences as

�C �
Cn�1

ÿ 2Cn
� Cnÿ1

Dt2
: �57�

Substituting equation (57) into equation (56) yields

�C � U2C2s �
1

12Ds2U2
��1 ÿ C2

r �C4s ÿ
1
8 �C2s ÿ C2n�

2
� � HOT; �58�

where the Courant number is defined as

Cr �
uDt

Dx
: �59�

The leading term of the truncation error is the fourth-order space derivative. It may be expected that
the numerical solutions of the wave equation will exhibit little oscillation. The error analysis in three-
dimensional space can be carried out in the same way but is more difficult. Given the same
assumptions, a similar result can be expected.

Figure 2. Local discretized grids for truncated error analysis for WEM=FEM
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5. NUMERICAL EXAMPLES

It is difficult to find a three-dimensional numerical example of the advection in a non-uniform and
unsteady flow field.Park and Ligget6 provides a three-dimensional example employing the Taylor
least squares finite element method. In this work the advection velocity is non-uniform but steady. A
number of three-dimensional examples of advection with WEM=FEM are given in this section. The
advection velocities are non-uniform and unsteady. In three dimensions a Gaussian cylinder is
defined as

C�x; y; z� � exp�ÿpr2
�; r2

� �x ÿ x0�
2
� �y ÿ y0�

2
; �60�

wherep is a positive real number and (x0, y0) is the centre of the Gaussian cylinder. The Gaussian
cylinder is uniform inz. When the distribution functionC decreases to a small number, say 0�000001,
r is defined as the radius of the Gaussian cylinder. Outside the cylinder the distribution function may
be considered as zero. Similarly, a three-dimensional Gaussian sphere is defined as

C�x; y; z� � exp�ÿpr2
�; r2

� �x ÿ x0�
2
� �y ÿ y0�

2
� �z ÿ z0�

2
; �61�

where (x0, y0, z0) is the centre of the Gaussian sphere. The radius is defined in the same way as for the
Gaussian cylinder. The eight-node isoparametric cube element and Lagrangian interpolation function
are used. The time derivative is approximated by finite differences, the spatial derivative terms are
calculated at time leveln and the time weighting factory in equations (27)–(29) is zero. The
coefficient matrices [A] and [E] of equation (26) are mass lumped.

Example 1Advection of a three-dimensional Gaussian cylinder in a uniformly rotational flow field.

The centre of rotation coincides with the centre of the cylinder. The domain is a hexahedron of size
100 m6100 m6 4 m. The advection velocity is designed to make the cylinder rotate uniformly
about its axis. The flow velocity is as given as

u � ÿo�y ÿ y0�; v � o�x ÿ x0�; �62�

whereo is the angular rotation rate. The centre of the cylinder is located atx0� y0� 50 m. The
domain is discretized into 5000 subcubes of size 2 m6 2 m6 2 m. The radius of the cylinder is
about 40 m and the solutions on the inflow boundaries are set to zero. The solutions on the outflow
boundaries are calculated with characteristics. The numerical solutions after one and two revolutions
are shown inFigures 3(a) and 3(b)respectively. The numerical solutions are accurate compared with
the exact solutions. The solution shape is well maintained. The peak values of the Gaussian cylinder
have been reduced to 99�6 per cent and 94�5 per cent respectively.

Example 2Advection of a three-dimensional Gaussian cylinder in a periodically rotational flow field.

The centre of rotation coincides with the centre of the cylinder. The domain size and other
parameters are the same as in Example 1. In the flow field the cylinder rotates about its axis
periodically. The flow velocity is specified as

o�t� � sin� �ot�; u � ÿo�t��y ÿ y0�; v � o�t��x ÿ x0�; �63�

where the cylinder rotates a half-revolution (p) in the first half- period, then rotates back to the
original position in the second half-period. The numerical solutions after one and two periods are
shown inFigures 4(a) and 4(b)respectively. The peaks have been reduced to 99�2 per cent and 94�0
per cent respectively.
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Example 3Advection of a three-dimensional Gaussian cylinder in a uniformly rotational flow field.

The centre of rotationdoes notcoincide with the centre of the cylinder. The advection velocity is
the same as in equation (62). The domain size is 100 m6 100 m6 2�5 m, discretized into 12,800
subcubes of size 1�25 m61�25 m61�25 m. The centre of the Gaussian cylinder is located at
x0� 30 m,y0� 30 m. The numerical solutions after a half- revolution and one revolution are shown
in Figures 5(a) and 5(b)respectively. The peaks have been reduced to 99�2 per cent and 94�1 per cent
respectively. The left hill inFigure 5(a)is the initial position of the Gaussian cylinder.

Example 4Advection of a three-dimensional Gaussian cylinder in a periodically rotational flow field.

The centre of the cylinderdoes notcoincide with the centre of rotation. The advection velocity is
the same as in equation (63). The domain size and other parameters are the same as in Example 3.
The Gaussian cylinder rotates about the centre of the domain periodically. The cylinder rotates back
too the original position after one period. The numerical solutions after a half-period and one period
are shown inFigures 6(a) and 6(b)respectively. The peaks have been reduced to 99�0 per cent and
92�8 per cent respectively. The left hill inFigure 6(a)is the initial position of the Gaussian cylinder.

Example 5Advection of a three-dimensional Gaussian cylinder in a periodic flow field.

The domain size and other parameters are the same as in Example 3. In the flow field the cylinder
moves in the diagonal of the domain periodically, as shown inFigure 7(a). The cylinder moves back
to the original position after one period. The flow velocity is specified as

u � v � sin�ot�: �64�

Figure 3. Numerical solutions for advection of Gaussian
cylinder in uniformly rotational flow field when centre of
cylinder coincides with centre of rotation: (a) after one
revolution; (b) after two revolutions: —— exact solution;

. . . . . . numerical solution

Figure 4. Numerical solutions for advection of Gaussian
cylinder in periodically rotational flow field when centre of
cylinder coincides with centre of rotation: (a) after one
period; (b) after two periods: —— exact solution;

. . . . . . numerical solution
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The initial centre of the cylinder is located atx0� 20 m,y0� 20 m. The numerical solutions after a
half-period and one period are shown inFigures 7(b) and 7(c)respectively. The peaks have been
reduced to 99�2 per cent and 99�0 per cent respectively. The left hill inFigure 7(b)is the initial
position of the Gaussian cylinder.

Example 6Advection of a three-dimensional Gaussian cylinder in a translational and rotational flow
field.

The domain size and other parameters are the same as in Example 5. In the flow field the cylinder
moves in the diagonal and rotates about its centre, as shown inFigure 8(a). The flow velocity is
specified as

u�t� � u0 ÿ o�y ÿ y0 ÿ u0t�; v � v0 � o�x ÿ x0 ÿ v0t�: �65�

The cylinder moves 85 m in the diagonal and rotates about half- revolution (p). The numerical
solution is shown inFigure 8(b). The peak has been reduced to 99�2 per cent. The left hill is the initial
position of the Gaussian cylinder.

Figure 5. Numerical solutions of advection of Gaussian
cylinder in uniformly rotational flow field when centre of
cylinder does not coincide with centre of rotation: (a) after a
half-revolution; (b) after one revolution: —— exact

solution; . . . . . . numerical solution

Figure 6. Numerical solutions of advection of Gaussian
cylinder in periodically rotational flow field when centre of
cylinder does not coincide with centre of rotation: (a) after a
half-period; (b) after one period: ——— exact solution;

. . . . . . numerical solution
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Example 7Advection of a three-dimensional Gaussian sphere in a uniformly rotational flow field.

The domain size is 100 m6 100 m6100 m, discretized into 125,000 subcubes of size
2 m62 m62 m. In the flow field the Gaussian sphere rotates about the diagonal of the cube
domain, as shown inFigure 9(a). The flow velocity is specified as

u �
o�z ÿ y�

���

3
p ; v �

o�x ÿ z�
���

3
p ; w �

o�y ÿ x�
���

3
p ; �66�

Figure 7(b, c). Numerical solutions of advection of
Gaussian cylinder in periodic flow field: (b) after a half-
period; (c) after one period: —— exact solution;

. . . . . . numerical solution
Figure 7(a). Sketch of advection of Gaussian cylinder in

periodic flow field

Figure 8(a). Sketch of advection of Gaussian cylinder in
translational and rotational flow field

Figure 8(b). Numerical solution of advection of Gaussian
cylinder in translational and rotational flow field:

—— exact solution;. . . . . . numerical solution
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whereo is the rotation rate. The numerical solutions in anx–y plane through the sphere centre after
one and two revolutions are shown inFigures 9(b) and 9(c)respectively. The peaks have been
reduced to 99�5 per cent and 94�7 per cent respectively. The solution shape is well maintained.

Example 8Advection of a three-dimensional Gaussian sphere in a periodically rotational flow field.

The domain size and other parameters are the same as in Example 7. The Gaussian sphere rotates
about the diagonal of the domain periodically. The Gaussian sphere rotates back to the original
position after one period. The numerical solutions after one and two periods are shown inFigures
10(a) and 10(b)respectively. The peaks have been reduced to 99�1 per cent and 93�1 per cent
respectively.

Example 9Advection-dominant transport of a two-dimensional cloud parcel in a uniform flow field.

The governing equation is written as

@C

@t
� ~V � HC � D

@
2C

@x2
�

@
2C

@y2

� �

: �67�

Figure 9(a). Sketch of advection of Gaussian sphere in
rotational flow field

Figure 9(b, c). Numerical solutions of advection of
Gaussian sphere in uniformly rotational flow field: (b) after
one revolution; (c) after two revolutions: —— exact

solution; . . . . . . numerical solution
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Figure 10. Numerical solutions of advection of Gaussian sphere in periodic rotational flow field: (a) after one period; (b) after
two periods: —— exact solution;. . . . . . numerical solution

Figure 11. Numerical solutions of transport of cloud parcel for various Courant numbers

WEM TO SOLVE MULTIDIMENSIONAL TRANSPORT EQUATION 437



The solution domain size is 100 m6100 m, discretized into 10,000 subsquares. The exact solution
of the advection–diffusion of a cloud parcel is given as

C�x; y; t� �
M

4pDt
exp ÿ

�x ÿ x0 ÿ ut�2 � �y ÿ y0 ÿ vt�2

4Dt

 !

; �68�

where M� 125 m2, x0� 20 m, y0� 20 m, D� 0�05 m2 sÿ1 and u� v� 1 m sÿ1. The three-
dimensional WEM=FEM code is used to test this problem. The solution of equation (68) at
t� 200 s is taken as the initial value. The numerical solutions att� 250 s are shown inFigure 11for
Courant numbersCr� 0�9, 0�5 and 0�2. The numerical solutions are accurate in comparison with the
exact solutions.

6. DISCUSSION AND CONCLUSIONS

In this paper the two- and three-dimensional advection equation and advection- dominated transport
equation were solved by WEM=FEM. The numerical results are fairly accurate compared with the
exact solutions. The advection velocities are non-uniform and unsteady. The wave equation has good
symmetry, but the first-order advection equation does not. Symmetrical numerical methods such as
the Galerkin FEM can be used to solve the wave equation accurately. Mass lumping greatly reduces
the computational costs and does not degrade the numerical solutions very much. For solving the
wave equation, the finite element method with mass lumping adopted in this paper is one of the most
effective numerical methods. If the system matrices are not mass lumped, the numerical solutions
could be better than given in this paper. The objective of this paper is to demonstrate that the wave
equation model is a good numerical model to solve a variety of advection-dominated transport
problems. The wave equation model has the following notable properties.

1. It has the ability to eliminate numerical dispersion successfully. The numerical solutions exhibit
little oscillation. The leading term of the truncation error is the fourth-order space derivative.

2. It introduces inverse numerical diffusion as well as numerical diffusion. They may be cancelled
partly at least. The numerical solutions of the wave equation model are relatively independent
of the Courant number under a stability constraint. The time step and space grid size may be
flexible in the stability range.

The wave equation model is a relatively new numerical method for solving advection-dominated
transport problems. Preliminary works have shown excellent numerical properties of WEM. Further
study is needed in both theory and application, such as how the numerical diffusion and inverse
numerical diffusion are created and how they are cancelled. More numerical experiments and
verification in practical applications are also needed.
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APPENDIX

The left side of equation (6) is expanded as

LS �
@

@t
ÿ ~V � H

� �

@C

@t
� ~V � HC

� �

�
@

2C

@t2
ÿ ~V � H

@C

@t

� �

�
@

@t
� ~V � HC� ÿ ~V � H� ~V � HC�

�
@

2C

@t2
ÿ ~V � H

@C

@t

� �

� ~V �
@

@t
�HC� �

@ ~V

@t
� HC ÿ ~V � H� ~V � HC�

�
@

2C

@t2
ÿ ~V � H

@C

@t

� �

� ~V � H
@C

@t

� �

�
@ ~V

@t
� HC ÿ ~V � H� ~V � HC�

�
@

2C

@t2
�

@ ~V

@t
� HC ÿ ~V � H� ~V � HC�

�
@

2C

@t2
�

@ ~V

@t
� HC ÿ ~V ~V : :HHC ÿ � ~V � H ~V � � HC

�
@

2C

@t2
ÿ ~V ~V : :HHC �

@ ~V

@t
ÿ � ~V � H� ~V

 !

� HC:

�69�

Finally, the wave equation is obtained as

@
2C

@t2
� ~V ~V : :HHC � ÿ

@ ~V

@t
� � ~V � H� ~V

 !

� HC: �7�

Equation (69) can also be written as

LS �
@

2C

@t2
�

@ ~V

@t
� HC ÿ H � � ~V � ~V � HC�� � ~V �H � ~V � � HC:

The wave equation can be expressed in an alternative form as

@
2C

@t2
� H � � ~V � ~V � HV �� ÿ

@ ~V

@t
� ~V �H � ~V �

 !

� HC: �21�

Equation (21) is used in the finite element calculation.
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